Skip to main content

Python Creating your own modules

Creating your own modules in Python is a great way to organize your code into manageable, reusable components. A module is simply a file containing Python definitions and statements. Here’s a step-by-step guide on how to create and use your own modules.

Step 1: Create a Python Module

A module is a Python file with a .py extension. You can define functions, classes, variables, and even include executable code.

Example:

Create a file named mymodule.py and add the following content:

# mymodule.py def greet(name): return f"Hello, {name}!" def add(a, b): return a + b class Person: def __init__(self, name, age): self.name = name self.age = age def display(self): return f"Name: {self.name}, Age: {self.age}"


Step 2: Importing the Module

To use the functions, classes, and variables defined in mymodule.py, you need to import the module in another Python script or an interactive session.

Example:

Create another file named main.py in the same directory and add the following content:

# main.py import mymodule # Using the functions from the module print(mymodule.greet("Alice")) # Output: Hello, Alice! print(mymodule.add(5, 3)) # Output: 8 # Using the class from the module person = mymodule.Person("Bob", 25) print(person.display()) # Output: Name: Bob, Age: 25


Step 3: Using from ... import Syntax

You can also import specific attributes or functions from the module using the from ... import syntax.

Example:

# main.py

from mymodule import greet, add, Person

# Using the imported functions directly
print(greet("Alice"))  # Output: Hello, Alice!
print(add(5, 3))       # Output: 8

# Using the imported class directly
person = Person("Bob", 25)
print(person.display())  # Output: Name: Bob, Age: 25


Step 4: Creating a Package

A package is a way of organizing related modules into a directory hierarchy. A package is a directory that contains a special __init__.py file and can include multiple modules.

Example:

  1. Create a directory named mypackage.
  2. Inside mypackage, create an empty __init__.py file to mark it as a package.
  3. Move mymodule.py into the mypackage directory.
  4. The directory structure should look like this:
mypackage/
    __init__.py
    mymodule.py
main.py

  1. Modify main.py to import from the package:
# main.py from mypackage import mymodule # Using the functions from the module print(mymodule.greet("Alice")) # Output: Hello, Alice! print(mymodule.add(5, 3)) # Output: 8 # Using the class from the module person = mymodule.Person("Bob", 25) print(person.display()) # Output: Name: Bob, Age: 25


Step 5: Importing from a Subpackage

You can further organize your package into subpackages by creating more directories with their own __init__.py files.

Example:

  1. Inside mypackage, create a directory named subpackage.
  2. Inside subpackage, create an empty __init__.py file and another module named mymodule2.py:
mypackage/
    __init__.py
    mymodule.py
    subpackage/
        __init__.py
        mymodule2.py

  1. Add content to mymodule2.py:
# mymodule2.py

def multiply(a, b):
    return a * b

  1. Modify main.py to import from the subpackage:
# main.py

from mypackage import mymodule
from mypackage.subpackage import mymodule2

# Using the functions from the modules
print(mymodule.greet("Alice"))  # Output: Hello, Alice!
print(mymodule.add(5, 3))       # Output: 8
print(mymodule2.multiply(4, 2)) # Output: 8

# Using the class from the module
person = mymodule.Person("Bob", 25)
print(person.display())         # Output: Name: Bob, Age: 25


Summary

  • Modules: Python files with a .py extension containing functions, classes, and variables.
  • Packages: Directories containing an __init__.py file and multiple modules, allowing hierarchical organization.
  • Importing: Use import to import the whole module or from ... import to import specific attributes.

Creating and organizing your code into modules and packages makes it more modular, reusable, and maintainable.

Comments

Popular posts from this blog

Performance Optimization

Performance optimization in SQL is crucial for ensuring that your database queries run efficiently, especially as the size and complexity of your data grow. Here are several strategies and techniques to optimize SQL performance: Indexing Create Indexes : Primary Key and Unique Indexes : These are automatically indexed. Ensure that your tables have primary keys and unique constraints where applicable. Foreign Keys : Index foreign key columns to speed up join operations. Composite Indexes : Use these when queries filter on multiple columns. The order of columns in the index should match the order in the query conditions. Avoid Over-Indexing:  Too many indexes can slow down write operations (INSERT, UPDATE, DELETE). Only index columns that are frequently used in WHERE clauses, JOIN conditions, and as sorting keys. Query Optimization Use SELECT Statements Efficiently : SELECT Only Necessary Columns : Avoid using SELECT * ; specify only ...

DAX UPPER Function

The DAX UPPER function in Power BI is used to convert all characters in a text string to uppercase. This function is useful for standardizing text data, ensuring consistency in text values, and performing case-insensitive comparisons. Syntax: UPPER(<text>) <text>: The text string that you want to convert to uppercase. Purpose: The UPPER function helps ensure that text data is consistently formatted in uppercase. This can be essential for tasks like data cleaning, preparing text for comparisons, and ensuring uniformity in text-based fields. E xample: Suppose you have a table named "Customers" with a column "Name" that contains names in mixed case. You want to create a new column that shows all names in uppercase. UppercaseName = UPPER(Customers[Name]) Example Scenario: Assume you have the following "Customers" table: You can use the UPPER function as follows: Using the UPPER function, you can convert all names to uppercase: UppercaseName = ...

TechUplift: Elevating Your Expertise in Every Click

  Unlock the potential of data with SQL Fundamental: Master querying, managing, and manipulating databases effortlessly. Empower your database mastery with PL/SQL: Unleash the full potential of Oracle databases through advanced programming and optimization. Unlock the Potential of Programming for Innovation and Efficiency.  Transform raw data into actionable insights effortlessly. Empower Your Data Strategy with Power Dataware: Unleash the Potential of Data for Strategic Insights and Decision Making.